CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Supporting Information

for

Design of Triazole-Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinity for PA-IL and RCA 120 by Using a DNA-Based Glycoarray

Lisa Moni, Gwladys Pourceau, Jing Zhang, Albert Meyer, Sébastien Vidal, Eliane Souteyrand, Alessandro Dondoni, François Morvan, Yann Chevolot, Jean-Jacques Vasseur,* and Alberto Marra*

Table of contents	Page
General Experimental Section	S2
Synthesis and physical data of 5	S3
Synthesis and physical data of 6	S4
Synthesis and physical data of 7	S5
Synthesis and physical data of 8	S6
Synthesis and physical data of 10	S6
Synthesis and physical data of 11	S7
Synthesis and physical data of 1	S8
Synthesis and physical data of 12	S9
Synthesis and physical data of 13	S9
Synthesis and physical data of 14	S10
Synthesis and physical data of 2	S11
References	S11

General Experimental Section. All moisture-sensitive reactions were performed under a nitrogen atmosphere using oven-dried glassware. Anhydrous solvents were dried over standard drying agents^[45] and freshly distilled prior to use. Reactions were monitored by TLC on silica gel 60 F₂₅₄ with detection by charring with sulfuric acid. Flash column chromatography^[46] was performed on silica gel 60 (40-63 μ m). Melting points were determined with a capillary apparatus. Optical rotations were measured at 20 ± 2 °C in the stated solvent; [α]_D values are given in deg·mL·g⁻¹·dm⁻¹. ¹H NMR (300 and 400 MHz) and ¹³C NMR spectra (75 and 100 MHz) were recorded from CDCl₃ solutions at room temperature unless otherwise specified. Peak assignments were aided by ¹H-¹H COSY and gradient-HMQC experiments. In the ¹H NMR spectra reported below, the *n* and *m* values quoted in geminal or vicinal proton-proton coupling constants $J_{n,m}$ refer to the number of the corresponding sugar protons.

High performance liquid chromatography (HPLC) analyses and purifications were performed on a Waters-Millipore instrument equipped with a Rheodyne injector, a 600S controller and a model 996 photodiode array detector. For analyses, a reversed-phase C18 Nucleosil (5 μ m) column (150 x 4.6 mm; Macherey-Nagel, Germany) was used at a flow rate of 1 mL·min⁻¹ using a linear gradient of acetonitrile 5% to 60% in 0.05 M aqueous triethylammonium acetate (pH 7) for 25 min. For purifications, a reverse phase C18 Delta-Pak (15 μ m) column (7.8 x 300 mm; Waters, Japan) was used at a flow rate of 2 mL·min⁻¹ using a linear gradient of acetonitrile (24 to 48%) in 0.05 M aqueous triethylammonium acetate (pH 7) for 25 min.

ESI mass spectra were recorded in positive ion mode on a Waters-Micromass ZMD 2000 LC/MS spectrometer from CH₃CN-H₂O solutions containing ammonium formate (10 mM). For accurate mass measurements the compounds were analyzed in positive ion mode by electrospray hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer (Q-TOF) fitted with a Z-spray electrospray ion source (Waters, Manchester, UK). The capillary source voltage and the cone voltage were set at 3500 V and 35 V, respectively; the source temperature was kept at 80 °C; nitrogen was used as a drying gas at a flow rate of ca. 50 L/h. The time-of-flight analyzer was externally calibrated with NaI from m/z 300 to 2000 to yield an accuracy near to 5 ppm. Accurate mass data were collected by directly infusing samples (10 pmol/ μ L in 1:1 CH₃CN-H₂O containing 10 mM ammonium formate) into the system at a flow rate of 5 μ L/min. The acquisition and deconvolution of data were performed with

the MassLynx 4.1 software (Waters, Manchester, UK). MALDI-TOF mass spectra were recorded on a Voyager mass spectrometer (Perspective Biosystems, Framingham, MA) equipped with a nitrogen laser. MALDI conditions: accelerating voltage 24 kV; guide wire 0.05% of the accelerating voltage; grid voltage 94% of the accelerating voltage; delay extraction time 500 ns. The sample (1 μ L) was mixed with a saturated solution (5 μ L) of hydroxypicolinic acid (HPA) in 1:1 CH₃CN-H₂O containing 10% of ammonium citrate, then a few beads of DOWEX 50W-X8 ammonium sulfonic acid resin were added. The above mixture (1 μ L) was placed on a plate and dried at room temperature and pressure.

5,11,17,23-Tetraallyl-25-(2,3:5,6-di-*O*-isopropylidene-β-D-mannofuranosyl)-26,27,28-tripropoxy-calix[4]arene (5). To a stirred solution of tetrol 3 (500 mg, 0.86 mmol) and triphenylphosphine (335 mg, 1.28 mmol) in anhydrous toluene (10 mL) was added diisopropyl azodicarboxylate (250 µL, 1.28 mmol) and, after 15 min, hemiacetal 4 (243 mg, 0.94 mmol). Stirring was continued for an additional 1.5 h, then the mixture was concentrated. To a stirred solution of the residue in DMF (20 mL) was added NaH (0.30 g, 7.7 mmol, of a 60% dispersion in oil) and, after 10 min, 1-iodopropane (0.75 mL, 7.7 mmol). The mixture was stirred at room temperature for 1.5 h, then diluted with CH₃OH (0.5 mL) and, after 30 min, diluted with 1 M phosphate buffer at pH 7 (80 mL) and extracted with Et₂O (2 x 100 mL). The combined organic phases were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with CH₂Cl₂-cyclohexane (from 1:1 to 3:1) to give **5** (652 mg, 80%) as a syrup; $[\alpha]_D = -19.2$ (c 0.6, CHCl₃). ¹H NMR (400 MHz): δ 6.98-6.92 (m, 4H, Ar), 6.08 (ddt, 2H, $J = 6.0, 12.0, 16.5 \text{ Hz}, 2 \text{ CH}_2 = \text{C}H\text{CH}_2$, 6.05-5.96 (m, 4H, Ar), 5.59-5.48 (m, 2H, 2) $CH_2=CHCH_2$), 5.12-5.01 (m, 4H, 2 $CH_2=CHCH_2$), 4.87-4.75 (m, 4H, 2 $CH_2=CHCH_2$), 4.78 (dd, 1H, $J_{1,2} = 3.0$, $J_{2,3} = 6.3$ Hz, H-2), 4.71 (dd, 1H, $J_{3,4} = 4.0$ Hz, H-3), 4.69 (d, 1H, H-1), 4.63 and 3.01 (2d, 2H, J = 13.8 Hz, ArC H_2 Ar), 4.48-4.43 (m, 1H, H-5), 4.42 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.40 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.35 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.23 and 3.88 (2dt, 2H, J = 5.5, 11.3 Hz, CH_3 - CH_2CH_2O), 4.14-3.97 (m, 4H, 2 H-6, $CH_3CH_2CH_2O$), 3.65-3.57 (m, 2H, $CH_3CH_2CH_2O$) CH_2O), 3.42-3.36 (m, 5H, H-4, 2 $CH_2=CHCH_2$), 3.08 (d, 1H, J=13.0 Hz, H_{eq} of $ArCH_2Ar$), 3.07 (d, 1H, J = 13.0 Hz, H_{eq} of $ArCH_2Ar$), 3.05 (d, 1H, J = 13.0 Hz, H_{eq} of $ArCH_2Ar$), 2.77-2.72 (m, 4H, 2 $CH_2=CHCH_2$), 2.12-1.98 (m, 4H, 2 $CH_3CH_2CH_2O$), 1.94-1.82 (m, 2H, $CH_3CH_2CH_2O$), 1.60, 1.44, 1.39 (3s, 12H, 4 Me), 1.10 (t, 3H, J =7.0 Hz, $CH_3CH_2CH_2O$), 0.87 (t, 6H, J = 7.0 Hz, 2 $CH_3CH_2CH_2O$). ¹³C NMR (75 MHz):

δ 156.2 (C), 156.1 (C), 153.6 (C), 152.4 (C), 138.75 (CH), 138.66 (CH), 138.0 (CH), 137.8 (CH), 137.1 (C), 136.9 (C), 136.8 (C), 136.3 (C), 134.0 (C), 133.8 (C), 132.9 (C), 132.7 (C), 131.8 (C), 129.4 (CH), 129.0 (CH), 127.3 (CH), 127.1 (CH), 115.0 (CH₂), 114.9 (CH₂), 114.8 (CH₂), 114.6 (CH₂), 112.9 (C), 109.0 (C), 106.6 (CH), 79.1 (CH), 78.9 (CH), 76.2 (CH), 73.3 (CH), 77.1 (CH₂), 76.5 (CH₂), 76.4 (CH₂), 66.6 (CH₂), 39.5 (CH₂), 39.35 (CH₂), 39.30 (CH₂), 31.7 (CH₂), 31.0 (CH₂), 30.9 (CH₂), 26.9 (CH₃), 26.1 (CH₃), 25.5 (CH₃), 24.7 (CH₃), 23.5 (CH₂), 22.7 (CH₂), 10.8 (CH₃), 10.1 (CH₃), 9.7 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for C₆₁H₈₀NO₉ [M+NH₄]⁺: 970.5833; found: 970.5907.

5,11,17,23-Tetrakis(3-hydroxypropyl)-25-(2,3:5,6-di-*O*-isopropylidene-β-Dmannofuranosyl)-26,27,28-tripropoxy-calix[4]arene (6). To a cooled (0 ℃), stirred solution of 5 (950 mg, 1.00 mmol) in anhydrous THF (10 mL) was added dropwise 9boracyclo[3.3.1]nonane (32 mL, 16.0 mmol, of a 0.5 M solution in hexane). The solution was allowed to reach room temperature in 3 h, then cooled to 0 °C and slowly diluted with 10 M NaOH (1 mL) and 35% H₂O₂ (3 mL). The mixture was stirred at room temperature for 15 min and then warmed to 60 ℃. St irring was continued for an additional 2 h, then the mixture was cooled to room temperature, diluted with 1 m phosphate buffer at pH 7 (80 mL), concentrated to remove the organic solvents, and extracted with AcOEt (2 x 100 mL). The combined organic phases were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of Sephadex LH 20 with 1:1 CH₂Cl₂-MeOH to give **6** (840 mg, 82%) as a white solid. An analytical sample was obtained by preparative TLC (silica gel 60, 0.5 mm, 10:1 CHCl₃-CH₃OH); $[\alpha]_D = -$ 15.6 (c 0.3, CHCl₃). ¹H NMR (300 MHz): δ 7.01-6.95 (m, 4H, Ar), 6.18-6.07 (m, 4H, Ar), 4.82 (dd, 1H, $J_{1,2} = 3.0$, $J_{2,3} = 5.6$ Hz, H-2), 4.73 (dd, 1H, $J_{3,4} = 3.9$ Hz, H-3), 4.71 (d, 1H, H-1), 4.66 and 3.03 (2d, 2H, J = 13.5 Hz, ArC H_2 Ar), 4.50-4.45 (m, 1H, H-5), 4.46 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.43 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.38 (d, 1H, J = 13.0 Hz, H_{ax} of ArC H_2 Ar), 4.26 and 3.89 (2dt, 2H, J = 5.9, 11.0 Hz, $CH_3CH_2CH_2O$), 4.16-3.98 (m, 4H, 2 H-6, $CH_3CH_2CH_2O$), 3.64 (t, 6H, J = 7.0 Hz, $CH_3 = 7.0$ Hz, C CH_2CH_2O , 2 $CH_2CH_2CH_2OH$), 3.49 (t, 4H, J = 7.0 Hz, 2 $CH_2CH_2CH_2OH$), 3.42 (dd, 1H, $J_{4,5} = 6.8$ Hz, H-4), 3.10 (d, 1H, J = 13.0 Hz, H_{eq} of ArC H_2 Ar), 3.09 (d, 1H, J = 13.0 Hz, H_2 Ar), 3.09 13.0 Hz, H_{eq} of ArC H_2 Ar), 3.07 (d, 1H, J = 13.0 Hz, H_{eq} of ArC H_2 Ar), 2.72 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.73 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.73 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.73 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.73 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.74 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.74 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.74 (t, 4H, J = 13.0 Hz, H_2 Ar), 2.74 (t, 4H 6.5 Hz, 2 CH₂CH₂CH₂OH), 2.19-1.98 (m, 16H, 4 CH₂CH₂CH₂OH, 2 CH₂CH₂CH₂OH, 2 CH₃CH₂CH₂O), 1.90 (tq, 2H, J = 7.0, 7.0 Hz, CH₃CH₂CH₂O), 1.60, 1.42, 1.40 (3s, 12H, 4 Me), 1.09 (t, 3H, J = 7.0 Hz, $CH_3CH_2CH_2O$), 0.89 (t, 6H, J = 7.0 Hz, 2 CH_3 - CH₂CH₂O). ¹³C NMR (75 MHz): δ 155.9 (C), 155.8 (C), 153.2 (C), 152.0 (C), 137.1 (C), 137.0 (C), 136.8 (CH), 136.3 (C), 135.8 (C), 134.8 (C), 134.6 (C), 133.8 (C), 132.7 (C), 132.5 (C), 131.6 (C), 129.0 (CH), 128.7 (CH), 127.0 (CH), 126.9 (CH), 126.8 (CH), 112.8 (C), 109.0 (C), 106.7 (CH), 79.1 (CH), 78.9 (CH), 77.4 (CH₂), 76.9 (CH₂), 76.5 (CH₂), 76.1 (CH), 73.3 (CH), 66.6 (CH₂), 62.45 (CH₂), 62.39 (CH₂), 62.2 (CH₂), 62.1 (CH₂), 34.2 (CH₂), 33.64 (CH₂), 33.57 (CH₂), 31.6 (CH₂), 31.1 (CH₂), 30.8 (CH₂), 26.9 (CH₃), 26.1 (CH₃), 25.5 (CH₃), 24.6 (CH₃), 23.5 (CH₂), 22.7 (CH₂), 10.8 (CH₃), 10.2 (CH₃), 9.8 (CH₃). HRMS (ESI/Q-TOF): calcd *m/z* for C₆₁H₈₅O₁₃ [*M*+H]⁺: 1025.5990; found: 1025.6002.

5,11,17,23-Tetrakis(3-azidopropyl)-25-hydroxy-26,27,28-tripropoxy-calix[4]arene (7). A mixture of calixarene tetrol 6 (774 mg, 0.76 mmol), sodium azide (390 mg, 6.00 mmol), diphenyl phosphoryl azide (980 µL, 4.53 mmol), 1,8-diazabicyclo-[5.4.0]undec-7-ene (450 μL, 3.02 mmol), and anhydrous DMF (4 mL) was stirred at 110 ℃ for 16 h then cooled to room temperature, di luted with Et₂O (100 mL), washed with H₂O (20 mL), dried (Na₂SO₄), and concentrated. A solution of the residue in 2:1 CH₂Cl₂-CF₃CO₂H (6 mL) was kept at room temperature for 3 h, then concentrated. The residue was eluted from a column of silica gel with 2:1 CH₂Cl₂-cyclohexane to give **7** (397 mg, 60%) as a syrup. ¹H NMR (300 MHz): δ 6.99 (s, 2H, Ar), 6.90 (s, 2H, Ar), 6.25-6.20 (m, 4H, Ar), 4.84 (s, 1H, OH), 4.38 and 3.36 (2d, 4H, J = 13.0 Hz, 2 $ArCH_2Ar$), 4.35 and 3.24 (2d, 4H, J = 13.6 Hz, 2 $ArCH_2Ar$), 3.86-3.80 (m, 2H, CH_3 - CH_2CH_2O), 3.73 (t, 4H, J = 7.0 Hz, 2 $CH_3CH_2CH_2O$), 3.33 (t, 2H, J = 7.0 Hz, CH_2-CH_2O) $CH_2CH_2N_3$), 3.30 (t, 2H, J = 7.0 Hz, $CH_2CH_2CH_2N_3$), 2.96 (t, 4H, J = 6.8 Hz, 2 CH_2 - $CH_2CH_2N_3$), 2.75 (t, 2H, J = 7.0 Hz, $CH_2CH_2CH_2CH_2N_3$), 2.68 (t, 2H, J = 7.0 Hz, CH_2CH_2 - CH_2N_3), 2.37-2.24 (m, 2H, $CH_3CH_2CH_2O$), 2.14 (t, 4H, J = 7.5 Hz, 2 $CH_2CH_2CH_2N_3$), 2.04-1.82 (m, 12H, 2 CH₂CH₂CH₂N₃, 2 CH₃CH₂CH₂O), 1.45 (tt, 4H, J = 7.0, 7.0 Hz, 2 $CH_2CH_2CH_2CH_2N_3$), 1.13 (t, 6H, J = 7.5 Hz, 2 $CH_3CH_2CH_2O$), 0.94 (t, 3H, J = 7.5 Hz, $CH_3CH_2CH_2O$). ¹³C NMR (75 MHz): δ 154.9 (C), 152.8 (C), 151.4 (C), 136.8 (C), 135.1 (C), 134.8 (C), 133.2 (C), 132.6 (C), 131.2 (C), 130.7 (C), 129.0 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 77.6 (CH₂), 76.6 (CH₂), 50.6 (CH₂), 50.3 (CH₂), 32.1 (CH₂), 31.9 (CH₂), 31.8 (CH₂), 30.8 (CH₂), 30.7 (CH₂), 30.5 (CH₂), 30.4 (CH₂), 23.4 (CH₂), 22.2 (CH₂), 10.8 (CH₃), 9.5 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for C₄₉H₆₃- $N_{12}O_4 [M+H]^+$: 883.5095; found: 883.5152.

5,11,17,23-Tetrakis(3-azidopropyl)-25-(2-t-butoxycarbonyl-aminoethoxy)-

26,27,28-tripropoxy-calix[4]arene (8). To a stirred solution of alcohol 7 (110 mg, 0.12 mmol) in anhydrous DMF (2 mL) was added NaH (15 mg, 0.37 mmol, of a 60% dispersion in oil) and, after 15 min, 1-bromo-2-t-butoxycarbonylaminoethane (84 mg, 0.38 mmol). The mixture was stirred at 50 °C for 18 h, then cooled to room temperature, diluted with 1 M phosphate buffer at pH 7 (15 mL) and extracted with Et₂O (2 x 50 mL). The combined organic phases were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with 1:1 CH₂Cl₂/cyclohexane (containing 0.3% of Et₃N) to give **8** (64 mg, 50%) as a syrup; ¹H NMR (400 MHz): δ 6.98 (bt, 1H, J = 6.0 Hz, NH), 6.85 (s, 4H, Ar), 6.08 (s, 2H, Ar), 6.05 (s, 2H, Ar), 4.40 and 3.06 (2d, 4H, J = 12.8 Hz, 2 ArC H_2 Ar), 4.25 and 3.09 (2d, 4H, J = 13.2 Hz, 2 ArC H_2 Ar), 3.99 (t, 2H, J = 4.5 Hz, OC H_2 CH $_2$ N), 3.98-3.92 (m, 2H, CH $_3$ CH $_2$ C H_2 O), 3.86-3.79 (m, 2H, $CH_3CH_2CH_2O$), 3.77-3.71 (m, 2H, $CH_3CH_2CH_2O$), 3.64 (dt, 2H, J = 4.5, 6.0 Hz, OCH_2CH_2N), 3.28 (t, 4H, J = 6.8 Hz, 2 $CH_2CH_2CH_2N_3$), 3.04 (t, 4H, J = 7.2 Hz, 2 $CH_2CH_2CH_2N_3$), 2.67 (t, 4H, J = 6.8 Hz, 2 $CH_2CH_2CH_2N_3$), 2.07 (t, 4H, J = 7.2 Hz, 2 $CH_2CH_2CH_2CH_2N_3$), 1.93 (tt, 4H, J = 6.8, 6.8 Hz, 2 $CH_2CH_2CH_2N_3$), 1.87-1.76 (m, 6H, 3 $CH_3CH_2CH_2O$), 1.52 (s, 9H, t-Bu), 1.47 (tt, 4H, J = 7.2, 7.2 Hz, 2 $CH_2CH_2CH_2N_3$), 0.94 (t, 6H, J = 7.5 Hz, 2 C H_3 CH $_2$ CH $_2$ O), 0.86 (t, 3H, J = 7.5 Hz, C H_3 CH $_2$ CH $_2$ O). ¹³C NMR (75 MHz): δ 156.5 (C), 155.3 (C), 154.9 (C), 153.1 (C), 136.3 (C), 136.2 (C), 134.8 (C), 134.1 (C), 133.9 (C), 133.2 (C), 133.0 (C), 129.0 (CH), 128.7 (CH), 127.6 (CH), 127.4 (CH), 78.9 (C), 77.2 (CH₂), 76.5 (CH₂), 75.2 (CH₂), 50.6 (CH₂), 50.5 (CH₂), 41.0 (CH₂), 32.0 (CH₂), 31.0 (CH₂), 30.9 (CH₂), 30.6 (CH₂), 30.4 (CH₂), 28.7 (CH_3) , 22.7 (CH_2) , 22.5 (CH_2) , 10.2 (CH_3) . HRMS (ESI/Q-TOF): calcd m/z for $C_{56}H_{76}$ - $N_{13}O_6 [M+H]^+$: 1026.6041; found: 1026.6030.

5,11,17,23-Tetrakis{3-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-galacto-pyranosyl)-1*H*-1,2,3-triazol-1-yl]propyl}-25-(2-*t*-butoxycarbonyl-aminoethoxy)-26,27,28-tripropoxy-calix[4]arene (10). A mixture of calix[4]arene tetra-azide **8** (34 mg, 0.03 mmol), ethynyl *C*-galactoside **9** (47 mg, 0.12 mmol), freshly distilled *N,N*-diisopropylethylamine (105 μL, 0.60 mmol), Cul (6 mg, 0.03 mmol), and anhydrous toluene (1 mL) was stirred in the dark at room temperature for 18 h, then concentrated. The residue was eluted from a column of silica gel with AcOEt (containing 0.3% of Et₃N) to give **10** (55 mg, 75%), a white foam; [α]_D = -8.8 (c 0.7, CHCl₃). ¹H NMR (400 MHz): δ 7.72 (s, 1H, H-5 Tr.), 7.71 (s, 1H, H-5 Tr.), 7.58 (s, 2H, 2 H-5 Tr.), 6.90 (bt, 1H, J = 5.5 Hz, NH), 6.84 (s, 4H, Ar), 6.07 (s, 2H, Ar), 6.04 (s, 2H, Ar), 5.53-5.51 (4dd, 4H, 4 H-4),

5.47-5.38 (4dd, 4H, 4 H-2), 5.21-5.17 (4dd, 4H, 4 H-3), 4.76 (d, 2H, $J_{1,2} = 10.0$ Hz, 2 H-1), 4.72 (d, 2H, $J_{1,2}$ = 10.0 Hz, 2 H-1), 4.40 and 3.07 (2d, 4H, J = 13.2 Hz, 2 ArC H_2 -Ar), 4.36-4.30 (4ddd, 4H, 4 H-5), 4.27 and 3.09 (2d, 4H, J = 13.2 Hz, 2 ArC H_2 Ar), 4.14-4.07 (m, 16H, 8 H-6, 4 ArCH₂CH₂CH₂), 4.01-4.00 (m, 2H, OCH₂CH₂N), 3.97-3.93 (m, 2H, $CH_3CH_2CH_2O$), 3.85-3.81 (m, 2H, $CH_3CH_2CH_2O$), 3.76-3.72 (m, 2H, $CH_3CH_2CH_2O$), 3.63-3.60 (m, 2H, OCH_2CH_2N), 2.63-2.58 (m, 4H, 2 $ArCH_2CH_2CH_2$), 2.24-2.19 (m, 4H, 2 ArCH₂CH₂CH₂), 2.17, 2.16, 2.03, 2.02, 1.99, 1.91, and 1.88 (7s, 48H, 16 Ac), 2.04-1.85 (m, 8H, 4 ArCH₂CH₂CH₂), 1.85-1.74 (m, 6H, 3 CH₃CH₂CH₂O), 1.52 (s, 9H, t-Bu), 0.95 (t, 6H, J = 7.5 Hz, 2 C H_3 C H_2 C H_2 O), 0.86 (t, 3H, J = 7.5 Hz, $CH_3CH_2CH_2O$). ¹³C NMR (75 MHz): δ 170.4 (C), 170.1 (C), 170.0 (C), 169.7 (C), 169.6 (C), 156.4 (C), 155.3 (C), 155.1 (C), 153.3 (C), 144.4 (C), 144.1 (C), 136.3 (C), 136.2 (C), 134.0 (C), 133.4 (C), 133.1 (C), 129.0 (CH), 128.9 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.7 (CH), 127.6 (CH), 127.3 (CH), 122.1 (CH), 78.9 (C), 77.5 (CH₂), 76.7 (CH₂), 75.2 (CH₂), 74.7 (CH), 73.7 (CH), 71.8 (CH), 68.7 (CH), 67.6 (CH), 61.5 (CH₂), 49.7 (CH₂), 49.5 (CH₂), 40.9 (CH₂), 31.8 (CH₂), 31.0 (CH₂), 28.6 (CH₃), 22.7 (CH₂), 20.65 (CH₃), 20.57 (CH₃), 10.2 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for $(C_{120}H_{157}N_{13}O_{42})/2$ [M+2H]²⁺: 1226.0275; found: 1226.0211.

5,11,17,23-Tetrakis{3-[4-(2,3,4,6-tetra-O-acetyl- β -D-galacto-pyranosyl)-1H-1,2,3-triazol-1-yl]propyl}-25-(2-azidoethoxy)-26,27,28-tripropoxy-calix[4]arene (11). A solution of 10 (196 mg, 0.08 mmol) in CH_2CI_2 (8 mL) and CF_3CO_2H (4 mL) was kept at room temperature for 1 h, then concentrated. To a mixture of the crude ammonium salt, K₂CO₃ (60 mg, 0.44 mmol), CuSO₄ 5H₂O (2 mg, 8 μmol), CH₃OH (4 mL), and CH₃CN (1 mL), was added imidazole-1-sulfonyl azide hydrochloride^[29] (40 mg, 0.20 mmol). The mixture was stirred at room temperature for 6 h, then concentrated, diluted with acetic anhydride (2 mL) and pyridine (2 mL), stirred for an additional 3 h, and concentrated. The residue was diluted with H₂O (10 mL) and extracted with AcOEt (2 x 50 mL). The combined organic phases were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with AcOEt to give 11 (132 mg, 69%) as a white foam; $[\alpha]_D = -10.2$ (c 0.7, CHCl₃). ¹H NMR (400 MHz): δ 7.69 (s, 1H, H-5 Tr.), 7.67 (s, 1H, H-5 Tr.), 7.59 (s, 2H, 2 H-5 Tr.), 6.71 (s, 4H, Ar), 6.22 (s, 2H, Ar), 6.17 (s, 2H, Ar), 5.54-5.51 (4dd, 4H, 4 H-4), 5.44 (dd, 2H, $J_{1,2} = J_{2,3}$ = 10.0 Hz, 2 H-2), 5.42 (dd, 2H, $J_{1,2} = J_{2,3} = 10.0$ Hz, 2 H-2), 5.22-5.16 (4dd, 4H, 4 H-3), 4.76 (d, 2H, 2 H-1), 4.73 (d, 2H, 2 H-1), 4.40 and 3.07 (2d, 4H, J = 13.1 Hz, 2 ArC H_2 Ar), 4.34 and 3.10 (2d, 4H, J = 13.1 Hz, 2 ArC H_2 Ar), 4.32-4.25 (m, 4H, 2 ArC H_2 CH₂CH₂), 4.18-4.07 (m, 18H, 4 H-5, 8 H-6, 2 ArCH₂CH₂CH₂, OCH₂CH₂N₃), 3.92-3.86 (m, 4H, OC H_2 CH₂N₃, CH₃CH₂C H_2 O), 3.78-3.69 (m, 4H, 2 CH₃CH₂CH₂O), 2.53-2.47 (m, 4H, 2 ArC H_2 CH₂CH₂), 2.17, 2.16, 2.03, 2.02, 1.99, 1.90, and 1.88 (7s, 48H, 16 Ac), 2.18-2.08 (m, 8H, 2 ArC H_2 CH₂CH₂CH₂, 2 ArCH₂CH₂CH₂), 1.94-1.84 (m, 10H, 2 ArCH₂CH₂CH₂CH₂, 3 CH₃CH₂CH₂O), 1.04 (t, 6H, J = 7.4 Hz, 2 C H_3 CH₂CH₂O), 0.94 (t, 3H, J = 7.4 Hz, C H_3 CH₂CH₂O). ¹³C NMR (75 MHz): δ 170.4 (C), 170.1 (C), 170.0 (C), 169.7 (C), 155.6 (C), 155.0 (C), 154.1 (C), 144.4 (C), 144.2 (C), 135.8 (C), 135.6 (C), 134.0 (C), 133.8 (C), 133.6 (C), 133.4 (C), 128.5 (CH), 127.8 (CH), 127.5 (CH), 122.1 (CH), 77.2 (CH₂), 76.5 (CH₂), 74.7 (CH), 73.8 (CH), 71.9 (CH), 71.3 (CH₂), 68.6 (CH), 67.6 (CH), 61.5 (CH₂), 50.7 (CH₂), 49.7 (CH₂), 49.6 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 30.8 (CH₂), 29.6 (CH₂), 23.3 (CH₂), 23.0 (CH₂), 20.7 (CH₃), 20.6 (CH₃), 10.5 (CH₃), 10.0 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for (C₁₁₅H₁₄₅N₁₅O₄₀)/2 [M+2H]²⁺: 1188.9965; found: 1188.9915.

5,11,17,23-Tetrakis{3-[4-(β -D-galactopyranosyl)-1*H*-1,2,3-triazol-1-yl]propyl}-25-(2-azidoethoxy)-26,27,28-tripropoxy-calix[4]arene (1). A solution of 11 (15 mg, 0.006 mmol) in a 2 M solution of NH₃ in CH₃OH (1 mL) was kept at room temperature for 16 h, then concentrated. The residue was eluted from a C18 silica gel cartridge with H₂O-CH₃OH (from 1:1 to 1:5), then CH₃OH, to give 1 (9.7 mg, 90%) as an amorphous solid; $[\alpha]_D = +14.2$ (c 0.4, CH₃OH). ¹H NMR (400 MHz, CD₃OD): δ 8.06, 8.03, 7.92, and 7.91 (4s, 4H, 4 H-5 Tr.), 6.79 (s, 4H, Ar), 6.47-6.45 (m, 2H, Ar), 6.40 (bs, 2H, Ar), 4.44 and 3.12 (2d, 4H, J = 12.7 Hz, 2 ArC H_2 Ar), 4.39-4.34 (3d, 4H, 4 H-1), 4.37 and 3.14 (2d, 4H, J = 12.8 Hz, 2 ArC H_2 Ar), 4.19 (t, 4H, J = 7.3 Hz, 2 ArC H_2 -CH₂CH₂), 4.10-4.05 (m, 6H, 2 ArCH₂CH₂CH₂, OCH₂CH₂N₃), 3.99-3.87 (m, 12H, 4 H-4, 4 H-2, CH₃CH₂CH₂O, OCH₂CH₂N₃), 3.79-3.64 (m, 16H, 4 H-5, 8 H-6, 2 CH₃CH₂- CH_2O), 3.64-3.59 (3d, 4H, $J_{2.3} = 9.5$, $J_{3.4} = 3.2$ Hz, 4 H-3), 2.42-2.36 (m, 4H, 2 ArC H_2 -CH₂CH₂), 2.11-2.04 (m, 8H, 2 ArCH₂CH₂CH₂, 2 ArCH₂CH₂CH₂), 2.02-1.90 (m, 6H, 3 $CH_3CH_2CH_2O$), 1.84-1.76 (m, 4H, 2 Ar $CH_2CH_2CH_2$), 1.08 (t, 6H, J = 7.5 Hz, 2 CH_3 -CH₂CH₂O), 1.00 (t, 3H, J = 7.5 Hz, CH₃CH₂CH₂O). ¹³C NMR (75 MHz, CD₃OD): δ 155.3 (C), 147.5 (C), 136.7 (C), 135.3 (C), 130.0 (CH), 129.3 (CH), 124.9 (CH), 80.9 (CH), 78.3 (CH₂), 76.3 (CH), 72.1 (CH), 71.0 (CH), 62.9 (CH₂), 52.2 (CH₂), 50.3 (CH₂), 33.0 (CH₂), 31.7 (CH₂), 24.6 (CH₂), 11.1 (CH₃), 10.6 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for $(C_{83}H_{115}N_{15}O_{24})/2$ $[M+2H]^{2+}$: 852.9120; found: 852.9095.

5,11,17,23-Tetrakis(3-azidopropyl)-25-(ethoxycarbonylmethoxy)-26,27,28tripropoxy-calix[4]arene (12). To a stirred solution of alcohol 7 (159 mg, 0.18 mmol) in anhydrous DMF (3 mL) was added NaH (15 mg, 0.37 mmol, of a 60% dispersion in oil) and, after 15 min, ethyl bromoacetate (60 μL, 0.54 mmol). The mixture was stirred at 55 ℃ for 18 h, then cooled to room temp erature, diluted with 1 м phosphate buffer at pH 7 (15 mL) and extracted with Et₂O (2 x 50 mL). The combined organic phases were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with 8:1 cyclohexane-AcOEt to give 12 (144 mg, 82%) as a syrup; ¹H NMR (400 MHz): δ 6.67 (s, 2H, Ar), 6.65 (s, 2H, Ar), 6.23 (s, 4H, Ar), 4.77 (s, 2H, OCH_2CO_2), 4.60 and 3.12 (2d, 4H, J = 13.5 Hz, 2 ArC H_2 Ar), 4.39 and 3.07 (2d, 4H, J= 13.0 Hz, 2 ArC H_2 Ar), 4.19 (q, 2H, J = 7.2 Hz, CO₂C H_2 CH₃), 3.88-3.83 (m, 2H, CH₃- CH_2CH_2O), 3.80-3.70 (m, 4H, 2 $CH_3CH_2CH_2O$), 3.23 (t, 2H, J = 6.8 Hz, $ArCH_2CH_2 CH_2$), 3.22 (t, 2H, J = 6.8 Hz, $ArCH_2CH_2CH_2$), 3.10 (t, 4H, J = 6.8 Hz, 2 $ArCH_2CH_2$ - CH_2), 2.55-2.50 (m, 4H, 2 ArC H_2 CH₂CH₂), 2.22 (t, 4H, J = 7.5 Hz, 2 ArC H_2 CH₂CH₂), 2.01-1.78 (m, 10H, 3 CH₃CH₂CH₂O, 2 ArCH₂CH₂CH₂), 1.66-1.56 (m, 4H, 2 ArCH₂- CH_2CH_2), 1.30 (t, 3H, J = 7.2 Hz, $CO_2CH_2CH_3$), 1.04 (t, 6H, J = 7.5 Hz, 2 CH_3CH_2 -CH₂O), 0.98 (t, 3H, J = 7.5 Hz, CH₃CH₂CH₂O). ¹³C NMR (75 MHz): δ 170.4 (C), 155.3 (C), 154.3 (C), 135.5 (C), 135.2 (C), 134.4 (C), 134.0 (C), 133.8 (C), 128.6 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 77.0 (CH₂), 70.3 (CH₂), 60.2 (CH₂), 50.6 (CH₂), 32.0 (CH₂), 31.3 (CH₂), 30.8 (CH₂), 30.5 (CH₂), 23.2 (CH₂), 14.2 (CH₃), 10.5 (CH_3) , 10.1 (CH_3) . ESI MS (969.18): 987.4 $[M + NH_4]^+$.

5,11,17,23-Tetrakis{3-[4-(2,3,4,6-tetra-*O*-acetyl-β-D-*galacto*-pyranosyl)-1*H*-**1,2,3-triazol-1-yl**]propyl}-25-(ethoxycarbonyl-methoxy)-26,27,28-tripropoxy-calix[4]arene (13). The cycloaddition between the tetra-azide 12 (140 mg, 0.14 mmol) and the ethynyl *C*-galactoside 9 (226 mg, 0.63 mmol) was carried out as described for the preparation of 10 to give, after column chromatography of silica gel (AcOEt), 13 (277 mg, 80%) as a white foam; [α]_D = -8.6 (c 0.9, CHCl₃). ¹H NMR (400 MHz): δ 7.68 (s, 1H, H-5 Tr.), 7.66 (s, 1H, H-5 Tr.), 7.59 (s, 2H, 2 H-5 Tr.), 6.66 (s, 2H, Ar), 6.65 (s, 2H, Ar), 6.23 (s, 2H, Ar), 6.22 (s, 2H, Ar), 5.53-5.51 (4dd, 4H, 4 H-4), 5.44 (dd, 2H, $J_{1,2} = J_{2,3} = 10.0$ Hz, 2 H-2), 5.42 (dd, 2H, $J_{1,2} = J_{2,3} = 10.0$ Hz, 2 H-2), 5.19 (dd, 2H, $J_{3,4} = 3.2$ Hz, 2 H-3), 5.18 (dd, 2H, $J_{3,4} = 3.2$ Hz, 2 H-3), 4.76 (s, 2H, OCH₂CO₂), 4.75 (d, 2H, 2 H-1), 4.73 (d, 2H, 2 H-1), 4.61 and 3.11 (2d, 4H, J = 13.5 Hz, 2 ArCH₂Ar), 4.39 and 3.06 (2d, 4H, J = 13.0 Hz, 2 ArCH₂Ar), 4.30-4.25 (m, 4H, 2 ArCH₂CH₂CH₂), 4.18 (q, 2H, J = 7.0 Hz, CO₂CH₂CH₃), 4.16-4.08 (m, 16H, 4 H-5, 8

H-6, 2 ArCH₂CH₂CH₂), 3.87-3.86 (m, 2H, CH₃CH₂CH₂O), 3.79-3.69 (m, 4H, 2 CH₃-CH₂CH₂O), 2.50-2.43 (m, 4H, 2 ArCH₂CH₂CH₂), 2.17-2.09 (m, 8H, 2 ArCH₂CH₂CH₂, 2 ArCH₂CH₂CH₂), 2.16, 2.02, 2.01, 1.99, 1.90, and 1.87 (6s, 48H, 16 Ac), 1.96-1.84 (m, 10H, 2 ArCH₂CH₂CH₂, 3 CH₃CH₂CH₂O), 1.27 (t, 3H, J = 7.0 Hz, CO₂CH₂CH₃), 1.01 (t, 6H, J = 7.5 Hz, 2 CH₃CH₂CH₂O), 0.94 (t, 3H, J = 7.5 Hz, CH₃CH₂CH₂O). ¹³C NMR (75 MHz): δ 170.3 (C), 170.1 (C), 170.0 (C), 169.6 (C), 155.5 (C), 154.5 (C), 144.3 (C), 144.1 (C), 135.6 (C), 135.3 (C), 133.9 (C), 133.7 (C), 133.2 (C), 128.3 (CH), 127.6 (CH), 122.1 (CH), 76.9 (CH₂), 74.6 (CH), 73.7 (CH), 71.8 (CH), 70.2 (CH₂), 68.6 (CH), 67.5 (CH), 61.4 (CH₂), 60.2 (CH₂), 49.6 (CH₂), 31.8 (CH₂), 31.3 (CH₂), 30.8 (CH₂), 23.1 (CH₂), 20.6 (CH₃), 20.5 (CH₃), 14.1 (CH₃), 10.4 (CH₃), 10.0 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for (C₁₁₇H₁₅₀N₁₂O₄₂)/2 [M+2H]²⁺: 1197.4985; found: 1197.5017.

5,11,17,23-Tetrakis $\{3-[4-(\beta-D-galactopyranosyl)-1H-1,2,3-triazol-1-yl]$ propyl}-25-carboxylmethoxy-26,27,28-tripropoxy-calix[4]arene (14). A solution of 13 (100 mg, 0.04 mmol) in a 0.2 M solution of NaOEt in EtOH (2 mL, prepared from Na and EtOH immediately before the use) was kept at room temperature for 3 h in a nitrogen atmosphere, then neutralized with Dowex 50 X2-400 resin (H⁺ form, activated and washed with H₂O and EtOH immediately before the use), and filtered through a sintered glass filter. The resin was washed with H₂O and DMF, and the solution was concentrated. A solution of the residue in 0.2 M aqueous NaOH (2 mL) was kept at room temperature for 24 h in a nitrogen atmosphere, then neutralized with Dowex 50 x 2-400 resin (H⁺ form, activated and washed with H₂O and EtOH immediately before the use), and filtered through a sintered glass filter. The resin was washed with H₂O and DMF, and the solution was concentrated. The residue was eluted from a C18 silica gel cartridge with 1:1 H₂O-CH₃OH, then CH₃OH, to give **14** (44 mg, 62%) as an amorphous solid; $[\alpha]_D = +14.2$ (c 0.5, DMF). ¹H NMR (300 MHz, $[D_6]$ DMSO + D_2O) selected data: δ 8.04 (s, 2H, 2 H-5 Tr.), 7.96 (s, 2H, 2 H-5 Tr.), 6.76 (s, 4H, Ar), 6.50 (s, 2H, Ar), 6.47 (s, 2H, Ar), 4.60 (s, 2H, OCH₂CO₂), 4.45 and 3.14 (2d, 4H, J =13.0 Hz, 2 ArC H_2 Ar), 4.31 and 3.14 (2d, 4H, J = 13.0 Hz, 2 ArC H_2 Ar), 2.37-2.26 (m, 4H, 2 ArC H_2 CH $_2$ CH $_2$), 2.18-2.08 (m, 4H), 2.04-1.75 (m, 14H), 0.96 (t, 6H, J = 7.5 Hz, $2 CH_3CH_2CH_2O)$, 0.93 (t, 3H, J = 7.5 Hz, $CH_3CH_2CH_2O)$. ¹³C NMR (75 MHz, DMSO $d_6 + D_2O$) selected data: δ 146.9 (C), 135.5 (C), 134.7 (C), 128.5 (CH), 124.0 (CH), 80.0 (CH), 79.9 (CH), 75.5 (CH), 70.8 (CH), 69.5 (CH), 61.4 (CH₂), 49.3 (CH₂), 31.9

(CH₂), 23.3 (CH₂), 11.0 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for (C₈₃H₁₁₄N₁₂O₂₆)/2 [M+2H]²⁺: 847.3984; found: 847.3996.

5,11,17,23-Tetrakis $\{3-[4-(\beta-D-galactopyranosyl)-1H-1,2,3-triazol-1-yl]$ propyl}-25-[(11-azido-3,6,9-trioxaundecan-1-amino)carbonyl-methoxy]-26,27,28-tripropoxy-calix[4]arene (2). A mixture of 14 (21 mg, 0.012 mmol), 1-hydroxybenzotriazole hydrate (HOBT, 3 mg, 0.024 mmol), and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC, 14 mg, 0.072 mmol) in anhydrous DMF (2 mL) was stirred at room temperature for 30 min, then commercially available 11-azido-3,6,9-trioxaundecan-1-amine 15 (10 µL, 0.036 mmol) was added. Stirring was continued for an additional 48 h, then the solvent was removed under vacuum. The residue was eluted from a C18 silica gel cartridge with H₂O-CH₃OH (from 1:1 to 1:5), then CH₃OH, to give **2** (12 mg, 51%) as an amorphous solid; $[\alpha]_D = +14.5$ (*c* 0.4, CH₃OH). ¹H NMR (400 MHz, CD₃OD): δ 8.11, 8.10, 7.90, and 7.89 (4s, 4H, 4 H-5 Tr.), 6.94 (s, 2H, Ar), 6.91 (s, 2H, Ar), 6.30-6.26 (m, 4H, Ar), 4.82 (s, 2H, OCH₂CO₂), 4.43 and 3.27 (2d, 4H, J = 13.5 Hz, 2 ArC H_2 Ar), 4.40 and 3.14 (2d, 4H, J = 13.0 Hz, 2 ArC H_2 Ar), 4.39 (d, 2H, $J_{1,2} = 9.8 \text{ Hz}, 2 \text{ H-1}, 4.34 \text{ (d, 2H, } J_{1,2} = 9.8 \text{ Hz}, 2 \text{ H-1}, 4.28-4.22 \text{ (m, 4H, 2 ArCH}_2-1.25)}$ CH_2CH_2), 4.11-4.06 (m, 4H, 2 Ar $CH_2CH_2CH_2$), 3.99-3.91 (8 dd, 8H, 4 H-2, 4 H-4), 3.91-3.78 (m, 6H, 3 CH₃CH₂CH₂O), 3.76-3.56 (m, 30H), 3.31-3.29 (m, 2H), 2.58-2.51 (m, 4H, 2 ArCH₂CH₂CH₂), 2.27-2.16 (m, 4H, 2 ArCH₂CH₂CH₂), 2.05-1.97 (m, 4H, 2 ArCH₂CH₂CH₂), 1.95-1.72 (m, 10H, 2 ArCH₂CH₂CH₂, 3 CH₃CH₂CH₂O), 1.02 (t, 6H, J = 7.5 Hz, 2 C H_3 CH $_2$ CH $_2$ O), 0.92 (t, 3H, J = 7.5 Hz, C H_3 CH $_2$ CH $_2$ O). ¹³C NMR (75 MHz, CD₃OD): δ 173.3 (C), 157.2 (C), 156.3 (C), 154.4 (C), 147.7 (C), 147.2 (C), 137.5 (C), 135.9 (C), 135.7 (C), 135.4 (C), 134.9 (C), 134.0 (C), 131.1 (CH), 130.3 (CH), 129.3 (CH), 128.9 (CH), 125.1 (CH), 124.9 (CH), 80.9 (CH), 78.9 (CH₂), 77.8 (CH₂), 76.3 (CH), 76.2 CH), 75.0 (CH₂), 72.2 (CH), 72.0 (CH), 71.8 (CH₂), 71.7 (CH₂), 71.6 (CH₂), 71.2 (CH₂), 71.0 (CH), 70.9 (CH₂), 62.9 (CH₂), 51.7 (CH₂), 50.8 (CH₂), 50.4 (CH₂), 33.0 (CH₂), 32.5 (CH₂), 32.1 (CH₂), 24.2 (CH₂), 24.0 (CH₂), 10.8 (CH₃), 10.4 (CH₃). HRMS (ESI/Q-TOF): calcd m/z for $(C_{91}H_{130}N_{16}O_{28})/2$ $[M+2H]^{2+}$: 947.4620; found: 947.4687.

References

- [45] Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*, 5th ed., Butterworth-Heinemann, Amsterdam, 2003.
- [46] Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.